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Introduction:  Poorly Ventilated Fires

Extinction Effects

• Extinction places raw fuel in smoke increasing its 
toxicity and contributing to CO production.

• Local or global vitiation (typical of compartment 
fires) makes flame vulnerable to extinction.

Extinction Criteria

• In fire, this vulnerability typically expressed in 
terms of a global O2 concentration.

• Recognizing that extinction is a local flame 
phenomenon (Simmons and Wolfhard, 1957) and 
later (Ishizuka and Tsuji, 1981) established a 
criterion where extinction occurs when                
at 300K for weakly strained methane flames.
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Introduction:  Extinction Problem Formulation
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• Strictly, extinction criteria must include composition, temperature, and flow effects.

• It is necessary to assess the relative importance of these effects and apply them to 
fire simulation tools.

Scale Analysis

Determine flow conditions in the flame 
zone for accidental fires. 

Extinction Analysis

Determine convenient extinction criteria at these 
flow conditions. 
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Kinematic Scales in Fires

• Use well known and experimentally 
validated scaling laws to predict 
large scale motions.

• Use Kolmogorov scaling arguments 
to predict small scale motions (local 
strain rate) from the large scale 
motions.

• Analytic solutions from asymptotic 
analysis predict a characteristic 
scalar dissipation rate.
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Kinematic Scales in Fires

Fire Scale Integral Scale Kolmogorov Scale
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Kinematic Scales in Fires

• Characteristic mean scalar 
dissipation rate at the flame tip as a 
function of pan Diameter (and Fuel 
specific parameters).

• Velocity predictions compare well 
with 1m diameter Methane flame 
measurements by (Tieszen, 2002).

• Another region of interest is the 
base of the flame where
– Large scale laminar mixing 

dominates
– We are examining the effect 

with direct numerical simulation

Heptane Pool Fire
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• Low strain flames: (12 s-1 – 75 s-1)

• Vitiated and heated reactant inlet.

– 300 K < TO2,∞ < 600 K

– 0.0 < YO2,∞ < 0.23

– 0.0 < Yf,∞ < 1.0

• Nitrogen co-flow flame isolation

Burner Features

Experimental Approach

23.0
2
=∞

OY

166.0
2
=∞

OY

-1s49.0=stχ



Slide 9

OPPDIF Simulation Approach

• CHEMKIN 4.1 OPPDIF Solver 
– Steady state
– GRI 3.0 Chemical Kinetics
– Adiabatic (no radiation)

• Uses the von Karman similarity 
transformation to simplify the 3-D 
flame to 1-D equations.

• High resolution allows for exact 
determination of key parameters 
such as scalar dissipation rate and 
temperature at Z = Zst.
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Extinction Criteria for Fires

Classical S-Shaped Curve
– Constant reactant properties
– Extinction by increasing strain

Alternative pathway
– Constant scalar dissipation rate
– Extinction by dilution of reactants
– Variable temperature reactants are 

also examined

Comparing extinction conditions
– Flame temperature
– Scalar dissipation rate

Pathways to Extinction

Air

Vitiated Air
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Critical Scalar Dissipation Rate Models

Asymptotic Theory

(Williams, 1975); (Peters, 1983);
(Puri and Seshadri, 1986)

Da Argument in Study
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Critical Scalar Dissipation Rate Models
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Determining Activation Temperatures

Model 1 – Asymptotic analysis following the method of Puri and Seshadri using Burke-
Schumann temperatures and the original equation for scalar dissipation rate.

Model 2 – Critical Damköhler model using Burke-Schumann temperatures, and scalar 
dissipation rate from asymptotic analysis including density correction and 
renormalization.

Model 3 – Numerical observation of extinction behavior follows the critical Damköhler 
number behavior.

1 2 3
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Critical Scalar Dissipation Rate Models

Model 1 (Red):
– Data from Conventional 
– Asymptotic analysis approach

Model 2 (Blue):
– Data from Corrected
– Critical Damköhler number approach
– Better agreement with      and       

from Model 3 due to added correction 
factors

Model 3 (Black):
– Data from definition of 
– Critical Damköhler number approach
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Extinction Map 

• Extinction map created by 
specifying          or             .

• FDS extinction map similar to 
current model at a low scalar 
dissipation rate (Model 2).

• Sample condition is vitiated, but 
still sufficient for burning.
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3D Extinction Map 

• Extinction region grows with 
increasing scalar dissipation rate.

• Fire size determines range of 
possible scalar dissipation rates. 

• This view provides detailed 
physical insight, but adds 
complexity to extinction model
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Extinction Boundary Analysis 

• 2D maps clearly reveal the effect of 
increased scalar dissipation rate.

• FDS map corresponds to a low and 
constant (one boundary) scalar 
dissipation rate assumption.

• Increasing fire size can expand the 
possible extinction conditions (flow 
dependent boundaries).

• The importance of radiation losses
and fuel vitiation will be explored to 
determine if flow effects can be 
neglected. 

Projected 3D Extinction Map
Projected 3D Extinction Map
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Summary of Current Work

• Developed an approach to characterize vitiated extinction in fires.

• Scaling argument indicates potentially significant scalar dissipation rates in 
large fires. (1m)

• Examined the application of three scalar dissipation rate extinction models 
considering Oxidizer vitiation.

• These models capture the essential physics of extinction but add
unwanted complexity. 

• The importance of radiation losses and fuel vitiation will be explored to 
determine if flow effects can be neglected. 
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Future Work
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Future Work

Development
• Modify the extinction model to include fuel vitiation and radiation 

effects. 
• Perform opposed flow experiments with imposed radiation losses and 

fuel vitiation to support model development.
• 2-D extinction maps can be derived from these variables in order to 

represent them in a similar way to the air vitiation case.
• Example for Radiation effects below:
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Future Work

Validation
• Simulate Pool Fires (Hamins, 1993-1996) and Reduced-Scale 

Enclosure (RSE) Experiments performed by NIST.

• Evaluate the critical temperature model’s ability to reproduce 
combustion efficiency to determine if neglecting flow effects is
appropriate.

Thank You
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